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A method is proposed for solving problems in which either scalar or vector waves 
impinge at an arbitrary angle on an inhomogeneous nonspherical target whose size 
is comparable to the wavelength of the incident radiation. This method reduces a 
partial differential equation, the Helmholtz wave equation, to an ordinary differential 
equation through selection of angular trial functions composed of weighted sums of 
spherical harmonics. The wave equation then becomes a coupled set of radial differential 
equations which are discretized and solved by matrix methods, enforcing boundary 
conditions on the surface of the smallest sphere which completely encloses the target. 
The method is an extension of partial wave expansion and reduces to it exactly when 
the target is spherically symmetric. 

I. INTRODUCTION 

The literature on scattering of either scalar or vector waves from objects other 
than spheres or infinite circular cylinders is quite sparse, especially in the so-called 
“resonance region” where the wavelength of the incident radiation is comparable 
to the spatial dimensions of the scatterer. Approximations which are useful in the 
low and high frequency domain are quite unreliable in the resonance region, and 
resort must be made either to approximate methods developed especially for this 
region, or to a tedious but, in principle, “exact” phase-shift calculation. This 
latter alternative is possible only when the surface of the scatterer coincides with 
a constant-coordinate surface in one of the eleven coordinate systems in which the 
Helmholtz wave equation 

V2d + k2c$ = 0 (1) 
is separable [l]. Aside from spheres and infinite circular cylinders, few other 
shapes have been treated by separation of variables, probably because of the lack 
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of extensive numerical tables of some of the special functions required. Represen- 
tative of what has been done for scalar waves are papers by Klante [2] on the 
paraboloid of revolution, Silbiger [3], Senior [4], Spence and @anger [5], and 
Yeh [6] on the prolate spheroid, and Yeh [7] on the oblate spheroid. Typical of the 
electromagnetic case are papers by Siegel et al. [S] on the prolate spheroid, and 
by Yeh [9] on the dielectric parabolic or elliptic cylinder. 

When target shape does not permit solution by separation of variables, recourse 
must be had to other methods which are either admittedly approximate, or are 
approximate in practice because of severe computational difficulties. Such approxi- 
mations take on many different forms depending on target shape, boundary condi- 
tion, and wavelength range. The various methods are usually classified as to their 
applicability to one of three somewhat overlapping regions: a low-frequency or 
Rayleigh region, where the wavelength of the incident radiation is large compared 
to the dimensions of the scattering body, an intermediate or resonance region where 
wavelength is comparable to target dimensions, and a high-frequency or geometrical 
optics region where wavelength is small compared to the size of the scatterer. 

A review article by Senior [lo] states that the only two methods which appear 
to offer promise in the resonance region are the variational method and the impulse 
approximation. Variational methods have been applied to electromagnetic 
problems by Levine and Schwinger [I I], Kouyomjian [12], and Wagner [13]. The 
scalar case has been treated in a paper by Altshuler [14], and more extensively in 
a monograph by Demkov [15]. Since the method proposed in this paper has a 
variational aspect, such methods will be discussed further in Section II. 

The principal paper on the impulse approximation is that of Kennaugh and 
Moffatt [16]. The utility of the method is severely limited because its basic equations 
must be rederived for each new target shape studied, and no general procedure for 
doing this has yet been discovered. 

When target surface shape does not deviate too strongly from that of a body 
whose scattering can be solved, the problem is amenable to attack by the method 
of perturbation of boundary shape as outlined by Morse and Feshbach [17] and 
applied to the case of scattering by a dielectric elliptic cylinder of small eccentricity 
by Yeh [18]. The theory of perturbation of boundary conditions as applied to 
convex but otherwise arbitrarily shaped conductors has been developed to arbitrary 
orders in the perturbation expansion by Erma [19]. 

Direct solution of the integral equation governing the scattering process, either 
exactly or approximately, has been attempted by a number of workers with 
varying degrees of success [20-241. When all else fails, ad hoc prescriptions to fill 
the gap between low and high frequency domains is sometimes attempted [25]. 

The advent of the high-speed digital computer has stimulated some new approaches 
to resonance region calculations that would have been impractical if not impossible 
only a few years ago. These methods are discussed in some detail by Richmond [26] 
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in a survey published in 1965. The methods discussed by Richmond form a closely 
related family in that they all lead to a system of linear equations obtained by 
enforcing boundary conditions at many points, either within the scatterer or on its 
surface. Depending on the origin of the equations, their solution leads either to a 
surface current distribution or to coefficients in a modal expansion for the scattered 
field. 

The earliest published study in which a boundary condition was enforced at 
discrete points on the surface of a nonspherical target was that of Kennaugh [27] 
who presented calculations for the scattering of electromagnetic waves axially 
incident on conducting prolate and oblate spheroids. Libel0 [28] later gave 
numerical results for axially incident scalar waves on a penetrable prolate 
spheroid, and exhibited the corresponding equations for the electromagnetic case. 
Mullin, Sandburg, and Velline [29] used the identical method to obtain numerical 
results for scattering from a perfectly conducting infinite cylinder of arbitrary 
cross-sectional shape. The alternative but closely related approach of solving for 
surface current densities rather than (directly) for the scattered field has also been 
used by a number of workers [30-371. Although the methods cited above have made 
a genuine contribution already and hold the promise of still further refinement, 
they, too, have limitations. The object of the research reported in this paper was 
to develop a new technique, suitable for digital computation, with the following 
characteristics. 

1. It must be applicable to the scattering of either scalar or vector waves 
in the resonance region. 

2. It must allow incident radiation at an arbitrary angle. 
3. It must be capable of treating a wide variety of target shapes, preferably 

arbitrarily shaped three dimensional bodies, but at least all bodies-of-revolution. 
4. It must allow penetrable targets of inhomogeneous composition repre- 

sented by a spatially variable complex index of refraction. 
5. It must not require shape-dependent equations that need rederivation 

for each new target analyzed. 

The method proposed for fulfilling these objectives is described in Section II, 
applied to scalar wave scattering in cylindrical and spherical coordinates, respec- 
tively, in Sections III and IV, and finally applied to electromagnetic scattering 
in spherical coordinates in Section V. 

II. DESCRIPTION OF THE METHOD 

Variational methods have been notably successful in attacking eigenvalue 
problems because, when the quantity of interest is the eigenvalue itself, say, the 



466 REILLY, JR. 

binding energy of the helium atom, for example, an accurate eigenvalue is often 
obtained even when the trial wavefunctions are quite poor. In scattering problems, 
however, it is the wavefunctions themselves that need to be determined accurately 
since the polarizations and cross sections of interest are ultimately determined by 
matching wavefunctions at some strategically determined boundary. Typical of a 
number of classical variational formulations is that of Demkov [38], based on the 
functional 

I = 
i’ 

@*(Vz + kz(r, 0, ?)} Y dr, (2) 

where Y and its adjoint @* depend on the target coordinates and the directions 
of the incoming and outgoing particle. The variation of I is proportional to the 
variation in the scattering amplitude, but accurate results are difficult to obtain 
unless trial functions Y and @* are known which simulate the proper influence 
of all coordinate variables. 

Suppose, however, that instead of trying to guess trial functions which represent 
the complete variation of all variables, say the spherical coordinates r, 8, and 9, 
we choose trial functions which leave the functional dependence on one of them 
either completely or partially undetermined. This will have the effect of reducing 
what was originally a partial differential equation to an ordinary differential 
equation in the unrestricted variable. Suppose, for example, that we wish to solve 
the scalar Helmholtz Eq. (1) for an arbitrary potential k2(r, 8, q). Let 

W, 0, y> = R(r) G(r, 6 y>, (3) 

where G(r, 0, v) is a known trial function and R(r) is to be determined. Substitute (3) 
into (l), multiply through by G*(r, 8, y) and integrate over the angular variables 
to obtain 

Then 

j G*V2RG dL? f s G”k2RG dQ = 0. (4) 

where 

and 

V2R + K2(r) R + L(r)(dR/dr) = 0, 

K2(r) = 
s G*V2G d6’ + 1’ G*k2G dJ-2 

JG*GdQ 

(5) 

(64 

L(r) = 2 j G* g d,(2if G*G da. (6b) 

Note that (5) is an ordinary differential equation in r which may be solved either 
analytically or numerically. Moreover, the equation is exact when G(r, 8, y) is 
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known exactly. If G is not exact but merely a trial function, then K2 and L are to be 
interpreted as functionals which are stationary with respect to small variations in G. 
This particular variational formulation is known as Galerkin’s method and is 
described at length by Kantorovich and Krylov [39]. Related methods based on 
the use of weighting functions other than G itself are discussed by Federighi [40] 
and by Vichnevetsky [41]. 

In all of the examples cited in Kantorovich and Krylov [39], trial functions are 
chosen which obey some simple boundary condition on the surface of the region 
of interest, usually that the wavefunction or its normal derivative be zero. The 
general scattering problem is more difficult unless we want to desert our objective 
of seeking solutions for scattering from penetrable bodies. But to require that for 
each new shape considered, we concoct some elaborate trial function that pins 
down k2(r, 0, y) on the boundary of the scatterer will not do either. Not only would 
this not be in keeping with our search for a general method, but it would do no 
good unless we knew what the external solution @(r, 8, 93) should be on the 
boundary. To adopt the Galerkin method to scattering problems, it is proposed 
that wavefunction matching not be done on the target surface, but rather on the 
surface of the smallest sphere (or cylinder) which completely encloses the actual 
target. Proper continuity of wavefunction slope and value inside this bounding 
surface will then depend partially on the form of the chosen trial functions, and 
partially on proper solution of Eq. (5). Unless the scatterer is a sphere or cylinder 
which completely fills the bounding surface, the scatterer might just as well be 
completely inhomogeneous, since the difference equation constructed to simulate (5) 
has to be prepared at any mesh point to cross over into a region of different index 
of refraction. 

The power of this method becomes most evident when G(r, 8, y) is not chosen to 
be a single monolithic trial function but is rather taken to be a weighted sum of 
functions chosen from a set of linearly independent polynomials. Such a procedure 
is called the “method of moments” by Kravchuk [42] and also by Harrington [43],l 
who has applied it to wire scatterers and antennas, and “weak separation of 
variables” by Bosnak and Tompkins [44], who concentrate on seeking analytic 
solutions to the coupled set of ordinary differential equations which result from 
applying weak separation within particularly shaped geometric domains. The 
principal point of difference of the method proposed herein, and the source of its 
power and generality, has already been cited, viz., the application of boundary 
conditions on a sphere or cylinder closely surrounding the scatterer rather than on 
the target itself as is done by the above authors, or rather than at an asymptotic 
distance as is proposed by Takayanagi [45]. 

1 Harrington makes the interesting but not surprising observation that the use of Dirac delta 
functions for weighting functions reduces the method of moments to the enforced boundary 
point matching method of Kennaugh [27], Libel0 [28], and Mullin [29]. 
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When complete orthogonal functions are used rather than merely linearly 
independent polynomials, the method of moments becomes essentially an “exact” 
one since the only approximation involved, the truncation of an infinite sum of 
such functions, is also necessary in ordinary partial wave caIcuIations. By adding 
more and more terms until convergence is obtained, results can be computed to 
arbitrary accuracy. The only role that the variational nature of the integrals of 
Eq. (6) plays is that if truncation is made somewhat short of good convergence, the 
relative weights of the functions included will shift slightly to compensate for 
missing higher order functions so that a reasonable solution is still obtained. 

III. APPLICATION TO SCALAR WAVES IN POLAR COORDINATES 

Consider the geometry of Fig. 1 where a plane scalar wave is incident at an 
angle do upon an infinite cylinder of arbitrary cross section. The incident plane 
wave is 

vi = exp(ik,[x cos & + y sin I&]} = exp{ik,,p COS(+ - &)} 

=io 4mJm(kop) ~0s 44 - 40) 

suggesting the external wave 

(7) 

Y 

FIG. 1. Geometry for scattering from an infinite cylinder of arbitrary cross-sectional shape. 
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and the internal wave 

qm = f B,4”“R,(p, d), (9) 

where A, , B, , and qm are to be determined, E, is the Neumann factor, J, and N, 
are cylindrical Bessel functions; where R,(p, 4) is a solution to that portion of the 
cylindrical coordinate Helmholtz equation that remains after separating out the 
z dependence: 

+ [k2(p, $) - ko2] R, = 0. 

Although R does not appear to be dependent on m, it will become so through 
application of the boundary condition at the matching radius p = pN . 

As a trial function for R,(p, #I), we expand in the complete orthogonal set 

MP, $1 = 1 4p>mm- ~0s tn”(4 - h4, 
m” 

(11) 

where the p-dependent weighting coefficients will be determined by the Galerkin 
reduction technique. To demonstrate, let (11) be rewritten in matrix form as 

R = Cal, (12) 

where C is understood to be a (1 x M) row vector and 01 is an (M x 1) column 
vector, M being the number of constituent trial functions retained in the truncation 
of (11). Proceeding as in Section II, we substitute (12) into (IO), multiply by the 
hermitian conjugate of C, and integrate over the range of 4. Because C has strictly 
real elements of the form cos m”4, the hermitian conjugate of C is its transpose, 
an (M x 1) column vector which, when multiplied times the (1 x M) vector C, 
produces an (M x M) matrix. More precisely, the three terms of (10) will each 
generate an (M x M) matrix whose i, j-th elements will be, respectively, 

d2 
(13b) 

~0s iC+ - AI>[~~(P, 4) - b21 cosj(#~ - A-,) d+. (I3c) 

Because of the orthogonality of the cosine terms, the first two of these matrices 
are diagonal. The third will be diagonal only if k2(p, 4) is really dependent only 



470 REILLY. JR. 

on p; in general, it will be a full matrix whose off-diagonal terms are of a magnitude 
proportional to the deviation of the target surface from that of a circular cylinder. 

These steps reduce (10) to the desired ordinary differential equation 

(14) 

the principal difference from the earlier technique being that (14) is a matrix rather 
than a scalar equation. It would be solved by imposing a grid of N mesh points over 
the radial region extending from the origin to the rim of the smallest circle enclosing 
the target, say p = fN . Since we will need only the slope acll/ap at p = pN , and 
since the numerical marchout technique which solves (14) relates any 01, to 01,+~ , 
the point ahead, we need solve (14) only once to obtain 

where D,-, is a known matrix calculated by recursion during the marchout 
procedure and the 01, has been particularized through the m-dependent boundary 
condition chosen for (c+,J at point N, p = pN . To see what this boundary condition 
should be, we require that the external and internal wavefunctions (8) and (9) be 
matched at p = pN : 

9ext lo=pN = Tint losoN. (16) 

If we multiply both sides of (16) through by cos m’(g4 - 4,) and integrate over #I, 
forcing the boundary value (a,), to be a column vector of all zeros except for a 
single “1” in the m-th position (counting 0, 1, 2,..., M - l), orthogonality reduces 
the summation on each side to one term, so that we obtain 

&n = -4h&&,~) + Wn&,p)l + L(b) - Wrd~odl~,~,N . 

Knowing (oI,),+~ and hence &lap via 

we have all the information we need to force equivalence of slopes at p = PN : 

a qkt aTint zzz- 
af &l’DN af * P=P&. 

(19) 

But now we encounter an interesting twist. Multiplying each side of (16) by 
cos m’(qS - +,,) and integrating as before, we see that the left side will still reduce 
to one term due to orthogonality, but that the right side will still be a summation. 
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This is so because (unless k2 was not really dependent on 4) the (~l,)~-~ vectors 
have nonzero elements, and from each OL, orthogonality will select out that 
(+Jrn,, for which nr” = nz’. The result is that we do not obtain a scalar equation 
for each individual vn2 but rather a matrix equation 

g =y 7 (20) 

indicating that each rFn is linearly coupled to all other 7’s. The size of the matrix .%? 
will be at least M x M and perhaps larger in cases where the size of k,pN dictates 
that we carry, say k,p, + 3 partial waves, but where we have reason to believe that 
fewer trial functions than this are needed in (11). Numerical inversion of 9 will 
determine T, from which all scattering quantities of interest may be calculated. 

The result that the 7’s are intertwined is hardly a complication for a method 
destined for use on a digital computer, and it is interesting to note that such an 
occurrence is not unique. As expected, it is at the heart of the forced boundary 
point matching methods of Kennaugh, Mullin, and Libelo, but it can even happen 
when variables are separable, as noted by Yeh [46]. 

These results are applicable to the scattering of sound waves provided we are 
careful to use the differential equation appropriate to an inhomogeneous acoustic 
medium 

V2P + k2P - (l/p) Tip . Cp = 0, (21) 

where P and p are, respectively, the pressure and density of the medium [47]. 
While not in Helmholtz form, the substitution Y = P(p)‘/” will reduce Eq. (21) to 

where 
v?P + K’Y = 0, (22) 

K2 =I k2 + (1/2P) V2p - (3/4,?) VP * VP, (23) 

so that the results of this section are applicable provided that the K2 of Eq. (23) 
is identified with the k2(p, 4) of Eq. (10). 

IV. SCALAR WAVES IN SPHERICAL COORDINATES 

1. Application to Y, b’ Coordinates 

We consider now the scattering of a scalar wave incident at an angle 8, upon an 
arbitrarily shaped body-of-revolution whose internal composition is represented 
by the (possibly complex) function k2(r, 0) (see Fig. 2.) In the sense that the Galerkin 
method to be applied here is a method of artificial separation of variables, it should 
be compared with another such method described in a concise note by Barantsev 
[48]. Although he recommends expansion in orthogonal modes, he follows the 
usual variational approach wherein his trial functions are made to contain the 
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FIG. 2. Geometry for scattering from an arbitrarily shaped body of revolution. 

complete functional variation of all coordinates, r, 0, and q. His paper considers 
only targets with a sharp boundary and problems with surface impedance boundary 
conditions. 

The technique followed here is conceptually identical to that of the previous 
section, the only difference in detail being that which results from choosing wave- 
functions and trial functions appropriate to spherical rather than cylindrical 
coordinates. The incident plane wave is, as given in Morse and Feshbach [49], 

jt(k,r) P,“(cos 0,) P,“(cos 0) cos mcp, (24) 

where 1 has been used in place of their IZ and, without loss of generality because of 
the axial symmetry, their angular variables U, ZJ specifying the incident direction 
have been replaced by &, and 0, respectively. A consistent external solution is then 

(pext = T z E,iz(21 + 1) i i zii hlm(kOr) P,“(COS 0,) Pl”(COS 0) COS my, (25) 

where 

&w,r) = iih”[Pdko’) + Mk3r)l + Baja) - eIl%I~N~ (264 

and p and q are related to the coulomb functions F and G via 

PI = F&r; qa = -GJkr. (26b) 

For uncharged projectiles or targets, p and q reduce, respectively, to the usual 
spherical Bessel functionsj, and n, . The internal wavefunction is 

(27) 
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where the Ra”(r, 6) are solutions to the (q-separated) Helmholtz equation 

V:*,RLr” + [k’(r, 0) - m2/(r2 sin2 S)] Rt” = 0. (-3) 

The appropriate trial functions are constructed from associated Legendre poly- 
nomials 

Rim = 1 aFl(r) Pp(cos 19). (29) 
1” 

If k2(r, 0) is real, (28), like its cylindrical counterpart (IO), can be reduced to an 
ordinary differential equation involving M x M matrices where M is the number 
of trial functions included in (29). But if 

k2(r, 0) = k12(r, 0) + ikz2(r, 0), (30) 
then 

Rim = RI + iR, , (31) 

and complex arithmetic can be avoided throughout the later development if we 
pause here to substitute (30) and (31) into (28), equate real and imaginary parts to 
zero, and obtain the matrix equation 

where 
S292 + K29’ = 0, (32) 

- 
92 sin2 0 = ( V2 m2/(r2 0) 0 V2 ’ - m2/(r2 sin2 0) 1 

K2 = ( 
k12 -k22 
kz2 1 k12 ’ 

Since (32) already involves 2 x 2 matrices, its ordinary counterpart will involve 
2M x 2M matrices. 

Returning attention to the trial expression (29), we note that certain mathe- 
matical properties and physical symmetries may help us to choose those constituent 
Pl”‘s that will do the most good. For example, there is no sense in choosing a 
P,” for which m > I since such terms are identically zero due to the properties 
of the associated Legendre polynomials. Similarly, when the scatterer is symmetric 
about 8 = 90”, the wavefunctions are either odd or even, so that in this case we 
pick polynomials which have the same parity as I (the I in the Pl”(cos 0) term which 
will appear in the boundary condition for R,“.) For example, in solving for R,3 
with five trial functions, we would use 

p33, Pb3, PT3, ps3, PiI 

for a problem with reflectional symmetry. 
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Proceeding as before, the ordinary matrix equivalent of (32) can be written as 

CCY = cdM, (33) 

where the olM is the column vector composed of zeros and the single “1” that 
represents the boundary condition at r = R, the radius of the smallest sphere that 
encloses the scatterer. The matrix C could be envisioned as a tridiagonal matrix of 
the form 

PO co 
a1 Pl Cl 

a2 pz c2 
7 

. . . 

where each element is itself a 2M x 2M matrix. The elements are connection 
coefficients relating the “flux” at a point IZ with its nearest neighbors on the mesh 
discretizing the region 0 to R. The a and c elements are merely geometrical weights 
which arise from approximating VT2R on a mesh of points discretizing the radial 
variable. 

The 2MN x 2MN matrix (34) does not have to be inverted directly; rather 
we seek a recursive solution 

a n-l = -[u,llc,-J a, , (35) 

where the 2M x 2M matrix u is to be determined through substitution of (35) 
into the general equation connecting any three points: 

as,-, + pnan + c,01,+~ = 0. 

This yields 
a n = -[Pn - GLK21cn-,N-1 GP,,l 

which agrees with assumption (35) if 

(36) 

(37) 

uo = PO ; url = pn - a&&c,-,]. (38) 

This enables us to start at the origin, calculating u. , u1 , u2 until we finally obtain 
the desired aiNp1 in terms of u& and the boundary value 01~ : 

Nj%-l = -[U;;l-ICN-l] 01N . (39) 

Although a and c were diagonal, p, in general, will not be because it contains 
contributions from integrals involving k2(r, 0). In particular, 

pn = --a, - c, -I- D, + Kn , (40) 



where 

and 

in which 

The K, have to be evaluated numerically, but from the equation defining the 
associated Legendre polynomials 

[Vo2 - m2/sin2 81 Ptrn = -Z(Z + 1) Plm, (44) 

so that D, reduces to diagonal form with 

(45) 

The integrations defined by Eq. (43) are shown pictorially for several different 
target shapes in Fig. 3. Since the prolate and oblate spheroid, the finite cylinder, 
the torus, and the double sphere are all symmetric about 90”, the p integration 
(dotted line) for the n-th radial point need be done only over the range O-l. The 

FIG. 3. Integral paths for typical k2(r, 0) patterns and their corresponding target shapes. 
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cavitated sphere of case f is not symmetric about 90” so that integration must be 
over the full range -1 to $1. None of the last three cases can be handled by the 
boundary perturbation method, which requires target surfaces which are single- 
valued functions of 0, but they present no difficulty to the Galerkin method, being 
based as it is on numerical quadrature. 

In anticipation of matching wavefunctions at Y = R, it will be helpful to define 
or review the following terms: 

tzm = E, 
(E - m)! 
(I + m), Pz”(cos 443 VW 

(I - m)! (I’ + m)! 
p”z z (I+ m)! (I’ -m)! ’ 

6f, = 
1 
:, 

if 1’ = I 
if 1’ # I, 

(43 

(469 

c$ E that (complex) coefficient (out of the set obtained 
as the solution to R,“) for which 1” = I’, 

[AhIF = (2Zf 1) &zlrn, 

(464 

(464 

where the him contains the desired ql” as defined in Eq. (26a). 
Then 

When the equation 

hxt +int -- =-- 
ar T=R ar 7=R 

is multiplied through by PF’ cos m’g, and integrated over 6 and q~, all terms for 
which m # m’ drop out due to orthogonality of the cosine terms, and the r.h.s. 
will contain a factor 

&jp = hrn[%z - 4% (1’ + m)! 
(21’2 1) (I’ - m)! . (49) 

9-R Ar 

Combining (48) with an equation matching Text and Tint at r = R yields 

(50) 

where the prime on the h implies differentiation and the other primes indicate that 
the primed index is held fixed while I is varied from 0 to L. 
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If we let 
Ah = crj + d and Ah’ = eq +f, 

then Eq. (50) can be rewritten as 

@&I + 4 - 4erl + fl, 

where the g and R are apparent through comparison with (50). Next, define 

r Egc-Ae; s = z$f -gd, 

so that 

forms a set of linear equations where r, q, and s are all complex. 
It is instructive to examine this set in matrix form for L = 2: 

0 0 0 
rlo hl r12 

0 
r20 

0 0 
r21 r22 

-------- 

0 0 0 

0 0 0 

0 0 0 

0 
roe 

0 
rol ri2 / 0 0 0 

00 0 

00 0 

1 
rll rllz / 0 

1 
rzl ri2 / 0 

_-----,--- 

0 0 1 ri2 

TO0 

rl1° 

71z” 

d 

721 

7722 

zzz 

477 

(51) 

(52) 

(53) 

(54) 

$0 + $1 + $2 

0 0 0 
SlO + $1 + s12 

$0 + $1 + $2 

(55) 

$1 + $2 

41 + d2 

2 
s22 

Because terms of different PZ are not coupled, we do not need to solve one set of 
(L + l)(L + 2)/2 equations, but may solve for (L + 1) smaller sets which is faster 
and more accurate. 

Note that the P,“(cos 0,) term need not be applied until after the time-consuming 
task of solving the partial differential equations for R,*. This means that with all 
other parameters held fixed, the valuable $I terms can be used to recalculate 
new q’s for any number of angles of incidence. 

Returning to the matrix defined in (54), we eliminate the need for complex 
arithmetic in the usual way: 

= [S, + S,i]. (56) 

581/11/4-z 
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Equating real and imaginary parts 

(57) 

which is equivalent to a matrix equation 

wr) = Y 

involving only real elements. Inverting 3, we obtain 

(58) 

rj = LhT-“Y (59) 

where the desired q’s emerge as a column vector whose top half contains the real 
parts of the qlrn and the bottom half the corresponding imaginary parts. 

2. Application to r, 0, g, Coordinates 

The technique of the previous section can be extended to an arbitrarily shaped 
three dimensional body. Given a k2(r, 8, q), replace the associated Legendre 
polynomials in the trial function (29) with the complete spherical harmonic 
Kv> v - %N 

this time allowing for a nonzero yO . The single integrals of (41) and (43) become 
double integrals over both 0 and F, with only (43), the integral involving P(r, 8, y) 
being at all complicated. In the equivalent of (54), terms of different m would be 
coupled, so that the remarks following (55) would no longer apply, but the worst 
that happens is that we have to invert one large matrix of size (L + l)(L + 2) x 
(L + l)(L + 2). With the memory sizes of contemporary computers, this causes 
no trouble up to about 12 partial waves. More I values would be desirable, 
however, since the number of trial functions needed for the accurate representa- 
tion of three dimensional targets is likely to be high. 

V. ELECTROMAGNETIC WAVES IN SPHERICAL COORDINATES 

1. Scattering of Electromagnetic Waves by an Inhomogeneous Sphere 

If, in a homogeneous isotropic medium, C represents any one of the electro- 
magnetic field vectors E, B, D, or H, then C is a solution of the vector Helmholtz 
equation 

where 
VV.C-V XV xC+kT=O, (61) 

(62) 
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in terms of light velocity c, circular frequency w, magnetic permeability p, dielectric 
constant E, and conductivity (T. Equation (61) is inseparable in the usual sense, 
but Stratton [50] shows that, in spherical coordinates, any one of three linearly 
independent vectors 

L=V!P VW 
M=VxrY Wb) 
N = k-l V x M 

is a solution under the condition 

(63~) 

V2Y + k2Y = 0, (64) 

i.e., that Y is a solution to the corresponding scalar wave equation. L is a longi- 
tudinal vector whereas M and N are transverse. 

The scattering of a plane electromagnetic wave from a homogeneous penetrable 
sphere is recorded in a number of places, the text of Born and Wolf being notable 
for its complete but lucid exposition [51]. For our purpose in setting the stage for 
the inhomogeneous case, we prefer the more concise approach of Stratton [52]. 
The incident E and H fields are then 

in terms of the odd and even components of M and N: 

where a, , a, , am are the unit vectors in spherical coordinates. The waves trans- 
mitted through the sphere are: 

Ht = Ho f z=l iL $$-# [bttMzi + ialtN$i] 

(6% 

Wb) 
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where the M and N depend on the internal wave number k, rather than on k, , 
and the scattered waves are: 

Es = E” s1 z Z(Z + 1) m ‘1 c2’ + I) [azSM($ _ &,“N$‘,] (684 

H, = Ho [CL iz $+j [b,“M$ + ia,‘Nz;], (68b) 

where the M and N depend on k, and the superscript (3) indicates that the spherical 
Bessel function j,(k,r) in (66) is replaced by the spherical Hankel function 
I$’ = j,(kg) + iq(k,r). The boundary conditions at r = R are 

a, x (Ei + E,) = a, x Et Wa) 
a, x (Hi + H,) = ar x Hi, (69b) 

i.e., equality of the tangential components of E and H across the surface of the 
sphere. Application of (69) leads to two pairs of equations which can be solved to 
obtain the coefficients of the scattered field: 

where p = k,R, np = k,R, and II is the index of refraction kl/ko . The integrated 
scattering and total (sometimes called the extinction) cross sections are then given 
in terms of al* and baa via: 

0, = $ $ (21 + 1X1 azs I2 + I bzs I”) 

ut = * f (2Z+ 1) Re(a,” + b,“). 
ko2 z-1 

U’lb) 

When, in the corresponding scalar case, k, is generalized from being constant 
to being a spherically symmetric function k,(r), no equations change. We merely 
are (usually) forced to resort to a numerical rather than an analytic approach to 
solving the radial wave equation. Such is not the case for electromagnetic scattering 
from inhomogeneous spherically symmetric bodies. The outline given here follows 
the presentation of Wyatt [53].2 

2 See also Phys. Reo. ABI 134 (1964) where Wyatt corrects his original scattering coefficient 
formulas. 
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Using the usual e-i”t time dependence for steady-state fields, Maxwell’s equations 
reduce to: 

V . (<E) = 0; V.H=O VW 

V x E = k,H; V x H = -k,E (72b) 

where k, = i&/c = (io/c)(E + i4na/w) and k, = h/c are related to the propa- 
gation constant k by 

k2 = -k,k, . (73) 

Equations (72a, b) are valid both inside a scatterer of unit magnetic permeability 
and propagation constant k” and in the surrounding nonconducting region of 
propagation constant k*. Wyatt shows that vector solutions can no longer be 
constructed from a single scalar function, say X, obeying the usual scalar Helmholtz 
equation 

V2X + k2X = 0, (744 

but must be constructed from X and a second scalar, say Y, obeying the modified 
scalar equation 

V2~-~~a(ry)+k2$L0 

klr ar ar U’4b) 

which reduces to a Helmholtz equation only when kl is independent of r. We must 
now solve two radial equations, the usual one 

d2Gl 
dr2 + [k2(r) - ‘(* s I) ] Gl = 0 

resulting from separation of the X equation, and an anomalous one 

d2 W, 2 dk dW, ~--___ 
dr2 k dr dr 

+ [k2(r) - ‘(I; I) ] w, = 0 

(754 

(75b) 

resulting from separation of the ?P equation. Application of the usual boundary 
conditions then yields expressions for al3 and bls that are very similar to those of 
(70a, b). 

The situation with respect to the internal waves is reminiscent of the scalar case 
in the presence of a spin-orbit coupling interaction. There we whould have to solve 
the scalar wave equation twice, once for each of two different spin values. Although 
we have no spin to contend with here, we are again faced with numerical solution of 
two scalar equations. 
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2. The Galerkin Method Applied to the Scattering of Electromagnetic Waves Incident 
at an Arbitrary Angle on an Inhomogeneous Body-of-Revolution 

A plane electromagnetic wave incident at the spherical angles 8,) IJ+, can be 
constructed from the dyadic 

as given in Morse and Feshbach [54]. In Eq. (76), u stands for o or e (odd or even), 
L, M, and N are vector wavefunctions of position r, and B, C, and P are vector 
functions of the angles 6,, and y,, as defined in terms of 

through the relations 

(77) 

Bzm = Lz(z ; l)ll,z Vxznz = 
[l(Z + 1)l”” 

(2Zf l)sin8 av I [ 
421 + 1) 

42 + 1) 
ixm 

z 1 
+Bg[(QT1 )X2- (9) XL]/ 

Cz, = [Z(Z + 1)]-1/2 V x rXlm = 
1zu + I)]“” 

i [ 

421-t 1) ix m 

(21+ 1) sin e as 1(1+ 1) ’ 1 
- a9, [( ‘,“,~‘)G1-(~)~:1]1 

For each expression, BI, = BTm + iB& , etc., and 

KiL . Bym = Pym . Gym = Bym . Gym = 0; 

Other interesting relations that will prove useful are 

Km = ar x Czm 

Cz, = -a, x BI, 

u = 0, e. 

V x BE, = -r-lClm. = --[l(Z + 1)]-‘12 V x PLnz 

V x CL, = r-lB1, + [E(Z + l)]l/” r-lPlm 

v * cl, = 0 

0’84 

(79) 

(804 
(8Ob) 
(804 

(804 
(89 
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_ (47&L) u + ml! ~sa$J*mu. 
(21+ 1) (I - m)! 

The longitudinal vector function L in (76) will vanish from the plane wave repre- 
sentation formed by the dot product aor . 3eik.r = (a0 cos 01 + a, sin CY) . 3eik” 
where a, and a, are unit vectors perpendicular to k and 01 is a polarization angle. 
The transverse functions M and N can be defined in terms of B, C, and P as 

NLL = V + 1) Gnm(& ~KW1j,(k~) + NZ + 1)11’2 %,(R &W1 -$ Mkr)] 

= $-$j jj,-,(kr) [P1;, + (+)“’ B$] 

and are related by 

Mtzm = k-‘V x N1 . elm 2 VW 
N1 olnl = k-IV x M;,, . (82b) 

In subsequent work we will leave the incident angle B. variable, but since we will 
be concerned only with bodies-of-revolution, we can choose p,, = 0 without loss 
of generality. 

The scattered waves can be constructed from M3 and N3 functions as 

which reduce to the corresponding expressions in (68) when 8, = 0 and 
a, = as = a, . 

The X and Y functions of Eq. (74) are called Debye potentials and it is fortunate 
that they exist even for spherically symmetric inhomogeneous regions much less 
for generally inhomogeneous ones since it is these potentials that allow reduction 
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of the vector problem to a set of scalar ones. The concern is removed by a theorem 
of Wilcox [55], who has proved that “every electromagnetic field defined in a 
region between two concentric spheres can be represented there by Debye 
potentials.” Application of the methods of his paper yield, for the general case 
in spherical coordinates 

V2X - (k,r)-l Vk, . V(rX) + k2X = 0 (844 
V2Y - (k,r)-l Vk, . V(S) + k2Y = 0 Wb) 

where we note that, since we are still considering unit magnetic permeability, the 
second term of (84a) vanishes, and that for k, = k,(r), (84b) reduces to (74b). 
Although (84b) looks formidable, a transformation similar to that used in the 
acoustic case will reduce it to Helmholtz form. Let Y = kv. Then 

where 
V29, + K29, = 0 (85) 

K2 = k2 + k-l V2k - 2(k2r)-l Vk . V(kr). (86) 

This allows the same digital program which provides the familiar c&‘s which solve 
(74a) to be used to obtain corresponding coefficients, say yFI , which solve (85) 
and hence (84b). 

Based on the a!$ and ~7~ , we now form two vector functions 

de = v x rx = c cxyqZ(Z + 1)]1’2 cr, @W 
elm 

~87~ = V x r!P = C &[Z(Z + 1)]1’2 Cl, 
ozm 

W’b) 

and note that as our target approaches a uniformly dense sphere, c$?& ---f ~7~ + 
j,(kr) 6,$, so that &? -+ Jtd2 -+ M as can be seen from (81a). Al, having been 
derived from X, should satisfy the same Helmholtz equation as the E of (72), viz. 

V XV x.A?1-k2JZ1=0 (884 

whereas .&Y2, derived from Y, should satisfy the same modified vector equation 
as H: 

V x V x JY2 - k2.H2 = k;lVk, x V x A?‘. (88b) 

Strictly speaking, this will not be the case since, for nonspherical symmetry, the r 
vector appearing in (87) is distorted to s = r + rk-2 Ok2 x r and (87a) should 
be .&Y1 = k;l V . k,sX. This implies that &%?l and M2 actually contain B and P 
terms as well as a C term, but their omission is of consequence only to those 
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seeking to map JP and J?P accurately deep inside the target. For scattering pur- 
poses, it is only necessary that JW and Ji? be accurate just inside the matching 
boundary sphere where k2 has ceased to vary with 19 and hence where (87) is valid 
and as accurate as numerical accuracy of 01 and y permit. 

From J&” and A2 we can form the complementary vector functions 

-k;‘V x Al2 = -k,lo; [(z + $) NZ + w2 Bzm + 5 KZ + 1) Pz,] 
(894 

A’-’ = k,lV x JI%? = k,lo; [($ + +) [Z(Z + 1)]1’2 Bzm + : w + 1) pz,] 5 

Wb) 

where use has been made of the vector identity 

Vx(YA)=(VY)xA+YVxA (90) 

and the relations of (80). 
Noting that Jlr’ and Jf2 are related to the curl of JZ2 and JP, respectively, we 

can derive the reciprocal relations: 

-k;lV x JIr2 = k-“V x V x L@ = A1 (914 

k,‘V x A’+ = k,‘[-k;‘V x V x A2 - V(k;‘) x V x A21 

= k-2[V x V x Aif2 - k;lVk, x V x JS%!~] = &Y2. (91b) 

In analogy with (83), the internal waves can now be expressed in terms of 
JP, d2, Jfl, JIrz as: 

where 
Ho = -iE, , (93 

as deduced from Maxwell’s equation for curl E and the transformation properties 
of .&P and JP. 
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To facilitate algebraic details, it will prove worthwhile to define 

sl”, = [Z(Z + l)]-l”a, * Cym(f+, 0) (944 

t 1”, = [Z(Z + l)]-1’2a, . BL(e, , 0) Wb) 

aym = s&&;J (94c) 

bym = t,“,(b&)” (944 

c& = s;,(a;J (944 

d,“, =: t,“,(b;m)t W) 

tv = E,P(21 + l)(Z - m)!/(Z + m)!. t%d 

Matching the tangential component of the incident plus scattered wave to that 
of the transmitted wave at the boundary Y = R yields 

& w{[sMl - jtN;] f [aM3 - ibN,31} = c W[CJ,@’ - idJ(rtl] 
ozm 

(954 

klIog w([tM1 + isN,1] + [bM3 + iaNt31} = k, c w[dd2 + icJlr,Zl, (95b) 
elm. 

where obvious sub- and superscripts have been suppressed to avoid clutter and 
the newly added subscript “t” on the N’s indicates deletion of the longitudinal P 
component [see Eq. (8 lb)]. 

By dot-product multiplication of each of Eqs. (95) first by M1/4r and then by 
N1/47r, integrating over 19 and F, and applying the orthogonality conditions of (80), 
we obtain four equations for the four unknowns a, b, c, and d: 

K,s + K,a = (4~r)-l C cw j Ml . A1 dQ 

K,t + K,b = (477)-l 1 (k,/k) dw j Ml . A%‘~ dsZ 

K3t + K,b = (47r)-l c dw j N1 . A’-l dsZ 

K3s + K,a = (4+ c (k,/k) cw j N1 . Jlr2 dQ, 

(964 

Wb) 

(96~) 

(964 

where the Ki are definite integrals to be displayed momentarily. These are not 
equations for four isolated quantities a, b, c, d, but, as in the scalar case, represent 
coupled linear equations that must be solved by matrix methods. Since we are 
postulating boundary matching on a sphere that is, say, at least one numerical 
mesh space dr beyond its closest approach to the target surface, the k in these 



SCATTERING FROM NONSPHERICAL TARGETS 487 

equations is kl, i.e., the constant wave number ot the medium surrounding the 
target. Then, since k, is also a constant, we may rearrange (96~) and (96d) slightly to 
obtain 

K3t + K4b = (47~-l C (k,/k2) dw j N1 . (-kIMI) dJ-2 We) 

K,s + K,a = (47+lC k-lcw j N1 * (k,Jlr2) dQ (96f) 

enabling us to work with the k-independent combinations 

--k,uV = 1 ($ + $) [Z(Z + l)]“” B 

k2M2 = c ($- + +) [Z(Z + I)]“” B. 

(974 

Wb) 

We are now in a position to define matrices G(a), G(y), H(a), H(r) as those having 
the respective components 

G;,,,(E) = (4?~)-l M’ j Ml . AZ1 dQ (984 

G;,,,(y) = (4n)-1 11’ j Ml . A2 dQ (98b) 

H&,(a) = (433-l M’ j N1 . (k2X2) dQ (98~) 

H;z,(y) = (4n)-1 w j N1 . (-k,P) dL’, (984 

where the G matrices, being based directly on 01 and y, are diagonal and the H 
matrices, being based on derivatives of Q: and y, will be nondiagonal except in the 
degenerate case of spherical symmetry. In a parallel vein, the Ki can be considered 
to be diagonal matrices whose elements are: 

(K,),,, = (4?~)-l w j Ml . M1 dl2 = Z(Z + 1) iz[j,(kr)12 A,,, (994 

(K,),,, = (47r-l w j Ml . M3 dQ = Z(Z + 1) ilj,(kr) h,(kr) 6,,, Wb) 

(K3)1,1 = (4+ w j IV . Ntl dL’ = Z(Z + 1) P[(kr)-l d/dr(rjl(kr))12 6,,, (99~) 

(K& = (477-l w j N1 . IVt3 dsZ 

= Z(Z + 1) P[(kr)-l d/dr(rjl(kr))][(kr)-l d/dr(rh,(kr))] 6,~~ , WI 

where h, = j, + in, . 
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The matrix counterparts of (96) are then 

G(a) c = [K,s + K,a] (IOOa) 

GWd) = WV + &bl (IOOb) 

fcy)(k,d) = k2K,t + J&b] (IOOC) 
H(a) c = k[K,s + &a], (1’JW 

where a, b, c, and k,d are unknown column vectors and s and t are known ones. 
Pairing the first and fourth of these equations and then the middle two, we can 
eliminate c and k,d to obtain 

a = -[(HG-‘)a K, - kK,]-l[(HG-‘)ol ICI - k&l s (101a) 
b = -[(HG-l), I& - kK&l[(HG-l),, ICI - kK,] t, (101b) 

from which all scattering quantities of interest can be obtained. 

VI. CALCULATIONAL RESULTS 

Computer programs based on the methods described, originally written for the 
CDC 3100, are now operational on the UNIVAC 1108. Each program, one for 
scalar and one for electromagnetic calculations, allows up to eight Legendre 
polynomial trial functions. The effect of varying the number of trial functions is 
shown in Table 1 for scalar wave scattering from a prolate spheroid whose major 

7.0 o/b = 1.5 
In = 1.5 

4 6.0 

-w Libello o 

g k 5.0 

w 
(3 4.0 

E 
E 3.0 

s 
$ 2.0 

1.0 

3.0 

kb 

FIG. 4. Scattering efficiency versus kb for scalar waves axially incident upon a prolate spheroid. 
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TABLE I 

Effect of Trial Function Variation on the Scattering from a Prolate Spheroid 

489 

a/b = 1.5 ka = 6 m = 1.5 

Reflection coefficients 

NTF I=0 I=1 I=2 

2 0.175 - 0.4281’ 0.447 - 1.03i 1.06 - 0.8421’ 
4 1.48 - 0.717i 0.590 - 1.31i 0.375 - 1.05i 
6 1.06 - 1.03i 0.678 - 1.26i 0.391 - l.lOi 

8 1.07 - 1.02i 0.680 - 1.26i 0.391 - l.lOi 

I=3 I=4 I=5 

2 -0.746 - 1.27i -0.540 - 0.53oi 0.267 + 0.816i 

4 -0.384 - 1.17i -0.142 - 0.5991’ -0.111 - 0.075i 
6 -0.366 - 1.17i -0.131 - 0.61Oi -0.112 - 0.112i 

8 -0.365 - 1.17i -0.131 - 0.61Oi -0.112 - 0.113i 

1=6 I=7 1=8 

2 0.9992 - 0.051i 0.9996 f 0.026i 1.000 + 0.003i 
4 1.08 + 0.161i 1.13 + 0.026i 1.000 - O.Olli 

6 1.08 + 0.165i 1.14 + 0.029i 0.998 - 0.013i 
8 1.08 + 0.165i 1.14 + 0.029i 0.998 - 0.013i 

Scattering efficiency 

Total cross section/nb2 Absorption cross section/?rb2 

2 Q, = 4.569 Q. = -0.3555 

4 4.150 -0.0075 

6 4.148 +0.0010 

8 4.146 -0.0003 
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to minor axis ratio and whose index of refraction were both 1.5, and for an incident 
wave number k such that ka = 6. While there is change in the reflection coefficients 
(the q’s of equations 26a and 59) as the number of trial functions (NTF) goes from 
2 to 4 to 6, the coefficients are quite well converged between 6 and 8 trial functions. 
The scattering efficiency is very stable for NTF = 4 onward, and the absorption 
efficiency, which should vanish for the entirely real index of refraction used, is 
clearly converging to zero. Similar behavior was obtained for spheroids of a/b ratio 
upto3tol. 

Although the present method is not limited to axial incidence or to real indices 
of refraction, the only results available for comparison, those of Libello [28], are 
limited to such cases. Figure 4 shows total scattering efficiency versus kb for the 
same prolate spheroid used in the trial function convergence analysis. Agreement 
is excellent throughout the resonant wavelength region scanned. 

CONCLUSION AND SUMMARY 

The Galerkin variational method has been applied to the scattering of scalar 
and electromagnetic waves incident at arbitrary angles on nonspherical targets 
which were allowed to have an inhomogeneous but still isotropic index of refraction. 
Galerkin solutions converge to exact solutions as the number of trial functions 
increases, provided that trial functions are chosen from a complete orthogonal set. 
Calculations made according to this method yield good results, even in the 
resonance region, for a number of bodies-of-revolution such as prolate and oblate 
spheroids and finite cylinders, where the measure of quality was taken to be agree- 
ment with either microwave analog experiments or with results obtained by other 
semiexact methods. Additional details will be published in appropriate applied 
journals. 
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